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Abstract

Uncertainty is an age old element of warfare. How does one measure success or

failure on the battlefield? This thesis explores the effect of uncertainty on real world

aerospace mission data from Operation Iraqi Freedom (OIF). Sources of uncertainty

are identified during data preparation and the effects of uncertainty are investigated

using multivariate analysis techniques. Two distinct cases are analyzed: one case

with a low level of uncertainty in predicting whether or not a mission is pre-planned

or alert generated, and another case with a high level of uncertainty in predicting

whether or not a mission is a success or a failure. Three multivariate analysis tech-

niques are used on both cases: Signal-to-Noise Ratio (SNR) saliency, Feed Forward

Neural Network (FFNN) supervised training, and General Regression Neural Net-

work (GRNN) supervised training. Measures of performance are gathered from each

of these techniques and analyzed to determine the effect of uncertainty on the data.
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EFFECTS OF UNCERATINTY

ON REAL WORLD AEROSPACE MISSION DATA

1. Introduction

“The best-laid schemes o’ mice an’ men (line 39) [3]” often go awry. This fact

combined with the inherent uncertainties of any military operation have plagued

military commanders throughout history. Clausewitz called this concept the “fog

of war,” with fog referring to the lack of clear information [16]. A good example

of this concept is the battle of Gettysburg during the American Civil War. The

Confederate commander, General Lee did not have any clear information about the

enemy because his calvary, the “eyes and ears” of the army, was “joyriding” around

the Union army and failed to provide any intelligence. The resulting uncertainties of

enemy troop movements, strength, and fortifications, increased the “fog of war” for

Lee. His chance to flank and rout the Union army at the Round Tops was lost due to

uncertainties of the tactical situation. If Lee had a clearer picture of the battlefield,

the carnage of Pickett’s charge and the subsequent Confederate loss may have been

avoided. The Joint Force Commanders (JFC) of today’s military operations face

the same uncertainties as Lee. Technology and operational doctrine have not yet

conquered the difficulties of “fog of war.”

1.1 Background

On today’s modern battlefield, the Joint Force Air Component Commander

(JFACC) is charged with the responsibility to exploit aerospace capabilities with

a cohesive Air Operations Plan (AOP) using a responsive and integrated control

system. The Aerospace Operations Center (AOC) is the centralized command center

for the JFACC where planning, direction, control, and coordination of aerospace
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operations occur. An Air Tasking Order (ATO) is used to execute air operations on

a daily basis in support of AOP and JFC objectives. After ATO execution, Mission

Reports (MISREP) provide initial Battle Damage Assessment (BDA). [5]

Naturally, the JFACC would like to know, in real-time if possible, how well

AOP and JFC objectives are being met. This said, modern warfare objectives are

no longer measured by body counts and destruction of enemy war materiel, but with

measures of effect derived from the tenets of Effects Based Operations (EBO). This

adds another layer of uncertainty to the analysts in the AOC who are tasked with

providing insight to the JFACC.

Finally, please note that throughout this thesis, AOC, ATO, and AOP will be

used in general terms only. An AOC will become a joint AOC, or JAOC, when air

operations are multi-service, or a combined AOC, or CAOC, when air operations

are coalition. Similarly, the ATO and AOP will become a joint ATO and joint AOP

respectively when air operations are multi-service.

1.2 Problem Statement

One of the most important insights that analysts in the AOC can provide the

JFACC is whether or not their aerospace missions are successful. However, how does

one measure success? A direct hit on a target may not meet AOP and JFC objectives.

For example, a building might have been abandoned by the enemy a week earlier and

its destruction achieves no effect. Also, an incorrect or misidentified target might be

struck with absolutely no effect. Even with accurate BDA, there is still a high level

of uncertainty involved in determining mission success.

1.3 Research Objectives

The objective of this research is to investigate the effects of uncertainty in

analyzing real-world aerospace mission data from OIF. This is accomplished by first
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identifying sources of uncertainty in the data and then using multivariate analysis

techniques, at varying levels of uncertainty, to measure the impact of uncertainty in

classification.

1.4 Research Scope

The real-world data is limited to ATO and MISREP databases compiled in the

AOC during OIF and made available for use by the Warrior Prep Center located

at Ramstein Air Base, Germany. Three consecutive ATO days worth of data near

the middle of OIF were chosen for further analysis with multivariate techniques.

The three techniques are as follows: SNR Saliency, FFNN supervised training, and

GRNN supervised training. Finally, measures of performance are collected for each

technique at two levels of uncertainty:

1. A high level of uncertainty in determining mission success.

2. A low level of uncertainty in determining if a mission was pre-planned or

alert generated.

Determining whether or not a mission was pre-planned or alert generated has

no real-world application. However, this case has a low level of uncertainty and

serves to validate the analysis techniques in this thesis for future use with ATO

and MISREP databases. The real-world application is determining whether or not

a mission is a success. This case has a high level of uncertainty and uses the vali-

dated analysis techniques from the low uncertainty case to lay the groundwork for

determining mission success.

1.5 Research Methodology

Research methods used in this thesis are data preparation, SNR saliency, FFNN

supervised training, and GRNN supervised training. Data preparation involves data

reduction and the “fusing” of ATO and MISREP databases into one usable database.
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This database will contain selected statistical performance measures or features. The

features with qualitative entries will be coded with numeric values. It is here that

uncertainties in the data are identified. The one usable database is then used for

multivariate analysis. SNR saliency uses FFNN supervised training with “noise”

introduced as an extra input feature. The purpose of this is to reduce the number

of input features without losing significant classification performance. Then, FFNN

and GRNN supervised training is used to predict mission success for a high level of

uncertainty case and mission generation for a low level of uncertainty case.

1.6 Thesis Organization

This thesis is organized into five chapters. This chapter includes a brief look

at the background, problem, objective, scope, and methodology of the effects of

uncertainty on real-world aerospace mission data. The second chapter contains a

detailed literature review on topics relevant to the uncertainty in generating, col-

lecting, processing, and analyzing aerospace mission data. These include the typical

structure of the AOC, the ATO planning cycle, software systems and databases used

in the AOC, EBO, and analysis operations in the AOC during OIF. Chapter three

describes the methodology used for data preparation and the three techniques used

for multivariate data analysis. Chapter four contains the numerical results from the

data analysis and the last chapter includes conclusions and recommendations for

future research.
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2. Literature Review

This chapter provides a comprehensive review of literature relevant to this research.

We begin by taking a look at the typical structure of the AOC, followed by a dis-

cussion of the six phases of the ATO planning cycle. Next, we review the numerous

software systems and databases used in the AOC. Also, we will take a look at the

philosophical concepts of EBO. Finally, we briefly discuss analysis operations in the

AOC during OIF.

2.1 AOC Structure

Air Force Doctrine Document (AFDD) 2 provides guidance for the structure

and primary functions of a typical AOC. The AOC is composed of four core divisions:

Strategy, Combat Plans, Combat Operations, and Mobility (see Figure 2.1). We will

take a closer look at the divisions that have a direct impact on the ATO and MISREP

data used in this thesis, all except Mobility. [5]

AOC

Director

Strategy

Division

Air Mobility

Division

Combat Plans

Division

Combat

Operations

Division

Figure 2.1 Typical AOC Structure

2.1.1 Strategy Division

The Strategy Division’s (SD) primary function is long-term aerospace oper-

ations planning across the theater of operations. The SD is composed of two core
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teams, Strategy Plans and Operational Assessment, with their respective functionally-

oriented specialty and support teams (see Figure 2.2). [5]

Strategy

Division

Strategy Plans

Team

Operational

Assessment

Team

Specialty

Teams

Support

Teams

Specialty

Teams

Support

Teams

Figure 2.2 AOC Strategy Division

The Strategy Plans Team is responsible for developing the JFACC Estimate

of the Situation, proposed aerospace strategy, and AOP to ensure continuity from

strategy to execution. This team is staffed with representatives of the aerospace

forces and capabilities under JFACC control. [5]

The Combat Assessment Team is responsible for assessing aerospace operations

at the operational or campaign level. Products at each phase of air operations are

evaluated to determine whether desired aerospace objectives are being met. Areas

of interest include BDA, munitions effectiveness assessment, re-strike options, and

overall mission assessment [5]. This is the team where analysts in the AOC are

supposed to be placed according to the Unit Manning Document (UMD) [11]. We

will see in the last section of this chapter that this changed during the course of OIF.

2.1.2 Combat Plans Division

The Combat Plans Division’s (CPD) primary function is near-term aerospace

operations planning and force allocation in accordance with JFACC guidance. The
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CPD is composed of two core teams, Master Air Attack Plan (MAAP) and ATO/Aerospace

Control Order (ACO) Production, with their respective functionally-oriented spe-

cialty and support teams (see Figure 2.3). [5]

Combat Plans

Division

Master Air Attack

Plan Team

ATO/ACO

Production Team

Specialty

Teams

Support

Teams

Specialty

Teams

Support

Teams

Figure 2.3 AOC Combat Plans Division

The MAAP Team is responsible for developing a daily employment plan for

available assets, the MAAP, using the Joint Integrated Prioritized Target List (JIPTL)

and guidance from the JFC and JFACC. The MAAP contains optimized target, plat-

form, weapon, and timing information for missions to be included in the ATO. [5]

The ATO/ACO Production Team is responsible for producing and distribut-

ing a timely and executable ATO, ACO, and Special Instructions (SPINS) on a

daily basis. This team is staffed by fully-qualified operational experts from each

aircraft or weapon system which may be tasked by the JFACC. Planning is done by

two specialty teams, fighter/bomber and support, and two support teams, airspace

management and communication. [5]

2.1.3 Combat Operations Division

The Combat Operations Division’s (COD) primary function is executing the

current ATO through constant monitoring of all aerospace missions. The COD is
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composed of two core teams, Offensive Operations and Defensive Operations, with

their respective functionally-oriented specialty and support teams (see Figure 2.4).

[5]

Combat

Operations

Division

Offensive

Operations

Team

Defensive

Operations

Team

Specialty

Teams

Support

Teams

Specialty

Teams

Support

Teams

Figure 2.4 AOC Combat Operations Division

The Offensive Operations Team is responsible for monitoring current offensive

aerospace operations, dynamic mission requirements, and resource status. Time

critical changes to the ATO based on invalid targets, new high priority targets, and

enemy actions are coordinated and published by this team. [5]

The Defensive Operations Team is responsible for monitoring current defensive

operations and the enemy air threat. Team members assess fighter and air defense

missile assets and coordinate to provide sufficient air defense assets. [5]

2.2 ATO Planning Cycle

Joint Publication 3-30 provides guidance for the execution of the ATO plan-

ning cycle. The cycle was developed to provide the JFC an effective and efficient

process to plan and execute air operations. The cycle is a repetitive process where

three ATOs are in existence at any given time. The first ATO is being executed

as today’s plan, the second is being produced as tomorrow’s plan, and the third
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is being planned as the day after tomorrow’s plan. Each ATO typically covers a

24-hour period of air operations. The six phases (see Figure 2.5) of the ATO cycle

are as follows: JFC/Component Coordination, Target Development, Weaponeer-

ing/Allocation, ATO Development, Force Execution, and Combat Assessment. [7]

Phase 1

Phase 2

Phase 3

Phase 4

Phase 6

Phase 5

JFC/Component
Coordination

Target

Development

Weaponeering/
Allocation

ATO
Development

Force
Execution

Combat

Assessment

Figure 2.5 ATO Planning Cycle

The JFC coordinates with component commanders to solicit support require-

ments, recommendations, and assess the results of the war fighting effort. This helps

the SD to identify target priorities, planning guidance, procedures, rules of engage-

ment (ROE), and other planning measures [7]. Also, the air effort is apportioned

by priority or percentage of effort to geographic areas, mission-type, and/or signif-

icant categories for the campaign [6]. As a result of this phase, JFC guidance and

objectives are defined for target development and air apportionment [7].

The JFC guidance and objectives from Phase 1 are used to focus target devel-

opment. The CPD nominates targets that meet these requirements. As a result of

this phase, a prioritized list of targets, the JIPTL is developed. [7]
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The JIPTL from Phase 2 is used to develop weapon and sortie allocations for

each target to be included in the MAAP. Weapon assignment is made after a detailed

look at expected results for lethal and non-lethal weapons against each prioritized

target. Sortie allocation is based on the total available sorties measured by aircraft

type, capability, and the mission requirements. As a result of this phase, the MAAP

is available as a foundation for the ATO. [7]

The MAAP from Phase 3, in addition to JFC and JFACC guidance, target

worksheets, and component requirements, is used to complete work on the ATO.

The ATO, together with SPINS and the ACO, provides enough operational and

tactical detail for components to plan and execute all of the missions that are tasked

by the ATO. A final ATO will integrate airspace, air defense, tanker plan, comm

plan, electronic warfare, SPINS, ROE, and suppression of enemy air defense (SEAD)

for each specific mission. As a result of this phase, the ATO is ready for execution

under the direction of the JFACC. [7]

The final ATO from Phase 4 is executed in a 24-hour period by the COD of

the AOC. The COD has offensive, defensive, and specialty operations teams to sup-

port the execution of the ATO. The teams monitor execution of the ATO, integrate

information and resources, analyze and prioritize options, provide options and rec-

ommendations to the JFACC to redirect assets, and direct any changes to the ATO.

As a result of this phase, combat operations results are available for assessment. [7]

Combat operations results from Phase 5 are used to assess the effectiveness in

achieving JFC objectives. However, combat assessment occurs at the other phases

of the ATO cycle using formal and informal processes. This allows the JFC/JFACC

staff to continuously evaluate the results of the current campaign and adjust ob-

jectives and strategies dynamically. As a result of this phase, the ATO cycle is

complete and combat assessment recommendations are used in development of sub-

sequent ATOs. [7]
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2.3 AOC Software Systems and Databases

The AOC is populated with many software systems and databases, each hav-

ing a critical contribution to the overall war effort. Information passes from these

systems and databases in a sequential fashion as the ATO planning cycle is executed.

However, each phase of the ATO planning cycle is dependent on data from a previ-

ous process before they can begin. The following discussion looks at those software

systems and databases typically found in the AOC and their interrelationships. [12]

First, during the JFC/Component Coordination phase, SD uses Microsoft Ex-

cel to develop a prioritized list of Tactical Tasks. When complete, the Excel spread-

sheet is passed to the Interim Targeting Solution (ITS) software system. ITS uses

current ATO Day, Objective Label, and Priority from the Excel spreadsheet to im-

port data needed for future planning into its own proprietary Microsoft SQL 2000

database. [12]

Second, during the Target Development phase, nominated targets and objec-

tives within the ITS database are used by the Joint Guidance Apportionment and

Targeting (JGAT) group to develop the JIPTL. The JIPTL is stored in both its

internal database and on the Theater Battle Management Core System (TBMCS)

software system Intelligence Shared Data Server (ISDS) database. [12]

Next, during the Weaponeering/Allocation phase, the CPD uses the MAAP

Toolkit software system to create the MAAP. The MAAP Toolkit uses the JIPTL

and other information from the TBMCS ISDS database. Outputs from the MAAP

toolkit, Target Planning Worksheets (TPW), are stored in its own proprietary Oracle

database and the Theater Air Planner (TAP) database. [12]

Additionally, during the ATO Development phase, the CPD uses the TAP soft-

ware system to build products for ATO production. TAP builds these products using

TPWs from its database and JIPTLs from the TBMCS ISDS database and stores
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them in the TBMCS Air Operations (AO) database. The TBMCS AO database is

used to produce the actual ATOs. [12]

Finally, during the Force Execution, the COD uses the Automated Deep Oper-

ations Coordination System (ADOCS) software system to coordinate time sensitive

targeting, correlate real-time feeds, and display real time battlefield information.

MISREPS from the operational units are stored in Microsoft Excel spreadsheets.

[13]

As you can see, there are at least seven disparate databases used to store data

from the first five phases of the ATO planning cycle: Microsoft Excel spreadsheets,

ITS Microsoft SQL 2000, JIPTL, TBMCS ISDS, MAAP Toolkit, TPS, and TBMCS

AO. The information in these databases is what the analysts in the AOC need to

conduct the last phase, Combat Assessment. One challenge is getting access to each

of these databases and merging them into a correlated and aggregated view. Another

challenge is dealing with the inconsistency of data formatting in each database (e.g.

one database may use f-16 while another uses f16). Both of these challenges create

uncertainty in performing data analysis. [12]

2.4 Effects-Based Operations

In addition to uncertainty in data, a high level of uncertainty lies in measuring

the operational success of EBO. To better understand EBO, we investigate Myers

and his six basic tenets. The focus of EBO is to persuade enemy leaders that

they have lost the conflict and cannot achieve their objectives. EBO attempts to

accomplish this without large-scale engagements and widespread destruction. His six

basic tenets of EBO are attrition only when necessary, people not things, systems

approach, linkage, universal application, and knowledge. [14]

Conflicts of the past were attrition-based, where success was measured in body

counts and ground gained. The winner was often determined by which side was
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willing to commit more lives and material to the conflict. Enemy leaders of today

have little concern for loss of life or material until they are directly threatened.

Ultimately, the focus of EBO is the enemy leader. [14]

EBO is based on the fact that war is waged between people and not machines.

There are characteristics of the human psyche that can be manipulated directly

and indirectly. Accordingly, EBO focuses on psychological and sociological versus

physical effects. [14]

We must understand that the enemy is a complex system of political, cul-

tural, technological, military, and economic components. These components have

key nodes and links which can be manipulated by EBO. As a result, we can achieve

political, economic, and social effects not possible by military force alone. [14]

Enemy targets and objectives are attacked because they produce effects linked

to strategic and operational objectives. EBO has the effect of linking geopolitical,

economic, communications, and military objectives into a wide variety of targets.

These objectives can be translated into desired effects before any military operations

begin. [14]

The power of EBO is that it is not limited to military operations. It has

a universal application across the spectrum of government operations because of

its focus on human behavior. Therefore, EBO can handle conventional military

operations, guerilla warfare, diplomatic action, economic crisis, etc. [14]

Knowledge is the key to EBO. We must rapidly obtain and disseminate in-

formation in order for our desired effects to be successful. If we can leverage our

technology to obtain information on our enemy, we can use EBO to create lasting

effects with taking unnecessary risks with our people and resources. [14]
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2.5 The AOC during OIF

We have discussed all the theory behind the AOC, ATOs, data, and EBO, now

we take a look at a first-hand account of analysis operations in the AOC during OIF.

When OIF began, analysts were placed in the Operational Assessment team of the

Strategy Division, according to UMD, and also in the JIPTL Tracking Cell. However,

leadership soon realized that an independent analysis cell was needed. Therefore,

during OIF a new Analysis and Assessment Division was stood up. The result from

lessons learned from OIF may lead to a different role and placement for analysts

in future AOCs. The major software tools and systems used were Microsoft Excel

and Access, TBMCS, ADOCS, MAAP Toolkit, and ITS. SAS was also used but not

approved for use in the AOC. A major source of uncertainty in the ATO planning

cycle was the lack of BDA. The entire strategy was based on a Strategy to Task

development and was effects based. However, measuring how well effects were being

accomplished proved a difficult task. [11]

2.6 Summary

The literature review provides important background on topics relevant to

this research. The typical structure of the AOC, the ATO planning cycle, and the

numerous software systems and databases used in the AOC all influence how data is

generated, collected, processed, and analyzed. These influences create varying levels

of uncertainty in the aerospace mission data used in this thesis. Ideally, we would

like to measure results at the operational level based on EBO objectives. However,

this adds additional uncertainty to the data. All of these sources of uncertainty were

present in the AOC during OIF.
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3. Methodology

In this chapter, the methodology used for data preparation and multivariate analysis

is described. The data preparation section reviews the process used to create a usable

database from the “raw” ATO and MISREP data. The multivariate section takes

a look at common practices, architecture, and mathematical models used for each

analysis technique.

3.1 Data Preparation

The source data for the ATO and MISREP databases used in this thesis was

generated and collected in the AOC during OIF. This data provides only a tactical

level look at aerospace missions, since the data contains no connection between

mission results and EBO objectives. The data has been processed from its “raw”

form into a set of Microsoft Access databases. Thus, some of the uncertainties that

existed in the original ATOs and MISREP have been compensated for. However,

there still exists plenty of uncertainty in the data. The data was made available for

use by the Warrior Prep Center located at Ramstein Air Base, Germany.

The objective of data preparation is to reduce the Microsoft Access databases

to a manageable number of data exemplars. The first step was to reduce the data

to three consecutive ATO days. These days were chosen near the middle of OIF in

order to reduce the bias created by operations tempo at the beginning and end of

the conflict. Next, 15 features were chosen and the set of Microsoft Access databases

“fused” into one usable Microsoft Excel spreadsheet. The challenges of this task

were deciding what features to keep, coding the qualitative data, and dealing with

uncertainty in the data. There are a total of 638 data exemplars in the final useable

database (see Appendix B for a database sample).
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3.1.1 Features

A detailed explanation of each feature, the coding scheme used, and uncertainty

involved is as follows:

MSN Type: Denotes the type of mission flown. Only those missions in which ord-

nance was dropped or weapons fired were kept in the database. Categories include,

but are not limited to, SEAD and close air support (CAS). This feature is coded 0

through 7. There is a low level of uncertainty in this data.

# AC: Denotes the number of aircraft in the mission. There is no coding and a low

level of uncertainty in this data.

MSN Time: Denotes the total mission time calculated from the take-off of the first

aircraft in the mission to the landing time of the last aircraft. There is no coding

and a low level of uncertainty in this data.

TOS: Denotes the total time on station spent in the target area. There is no coding

and a low level of uncertainty in this data.

AC Type: Denotes the type of aircraft used in the mission. The aircraft include

Air Force, Navy, Marine, and British variants. This feature is coded 0 through 19.

There is a low level of uncertainty in this data.

# ESM: Denotes the number of electronic surveillance measures employed against

the aircraft during the mission. There is no coding and a low level of uncertainty in

this data.

# SAF: Denotes the number of surface-to-air firings against the aircraft during the

mission. There is no coding and a low level of uncertainty in this data.

SAF Type: Denotes the type of surface-to-air fire encountered. Categories in-

clude, but are not limited to, surface-to-air missiles (SAM) and anti-aircraft artillery

(AAA). This feature is coded 0 through 4. There is a moderate level of uncertainty

in this data due to the various text-based inputs in the “raw” data (e.g. “AAA””,

“30mm”, and “guns” are entries that may or may not be grouped together as AAA).
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STGS: Denotes the number of unexpected enemy sightings during the mission.

There is no coding and a low level of uncertainty in this data.

# ORD: Denotes the number of ordnance dropped and/or fired during the mission.

There is no coding and a low level of uncertainty in this data.

ORD Type: Denotes the type of ordnance dropped and/or fired during the mission.

Categories include, but are not limited to, AGM-164A, GBU-31, and 30mm. This

feature is coded 0-34 for each individual target and an average value is used at the

mission level. There is a low level of uncertainty in this data.

ALT: Denotes the aircraft altitude when the ordnance was dropped and/or fired

during the mission. There is no coding and an average value is used at the mission

level. There is a low level of uncertainty in this data.

TGT Type: Denotes the type of target tasked by the mission. Categories include,

but are not limited to, tanks, buildings, and bridges. This feature is coded 0 through

11 for each individual target and an average value is used at the mission level. There

is a moderate level of uncertainty in this data due to the various text-based inputs

in the “raw” data (e.g. “tank”, “T-72”, and “armor”” are entries that may or may

not be grouped together as tanks).

Alert: Denotes whether a mission was pre-planned or generated from air or ground

alert aircraft. This feature is coded 0 for a pre-planned mission and 1 for an alert

mission. There is a low level of uncertainty in this data.

Effect: Denotes a measure of performance for mission success. This measure is

based on the average individual effect for all targets attacked during the mission (see

Table 3.1 for sample calculation). The following heuristic was used to code the effect

for each individual target:

1. The weapon hit the target and went high order

(the primary charge detonated): coded 1.

2. The weapon missed the target or hung: coded 0.
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3. The weapon has uncertain results: coded .5.

Table 3.1 Sample Effect Calculation

Target Effect
# 1: .5
# 2: 0
# 3: 1

Mission Effect: (.5 + 0 + 1)/3 = .5

There is a high level of uncertainty in this data due to the various text-based

inputs in the “raw” data (e.g. “success”, “successful weapon release”, and “weapon

hit target and went high order” are entries that may or may not be grouped together

and coded 1).

3.1.2 Data Cases

Now that the raw data is reduced into one usable database and coded, two

main data cases are chosen for multivariate analysis. The first case uses Alert as an

output feature, leaving 14 input features. This case has a low level of uncertainty

for the output feature with all levels of uncertainty for the input features. The

second case uses Effect as an output feature, leaving 14 input features. This case

has a high level of uncertainty for the output feature with moderate and low levels

of uncertainty for the input features. Overall, the choice of cases serves to compare

and contrast the effects of uncertainty on the data.

The objective of the Alert case is to predict whether a mission was pre-planned

or alert generated. This will be accomplished by using multivariate analysis clas-

sification techniques. Some additional coding (see Table 3.2) and data reduction

is needed before starting analysis. Targets (output feature identifiers) are coded
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with a {.1,.9} values instead of typical {0,1} unipolar values since the infinite nature

of unipolar sigmoids (used in the FFNN) near {0,1} [10]. Using targets between

{.1,.9} produces finite sigmoid outputs. Figure 3.1 shows how the unipolar sigmoid

approaches 0 at −∞ and 1 at ∞. The 638 data exemplars are reduced down to

455 since only 3 of the 8 mission types have both pre-planned and alert generated

missions (see Table 3.3 for exemplar breakdown).

Table 3.2 Alert Case Targets

Class Target 1 Target 2
Alert .9 .1

Pre-Planned .1 .9

 
Figure 3.1 Unipolar Sigmoid
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Table 3.3 Alert Case Exemplar Breakdown

Class # Exemplars % Total
Alert 208 45.7

Pre-Planned 247 54.3

The objective of the Effect case is to predict whether or not a mission was a

success. This will be accomplished by using multivariate analysis classification tech-

niques. Some additional coding (see Table 3.4) is needed before starting analysis.

Targets are coded with {.1,.9} values, with the same reasoning as the Alert case.

The problem here is that the Effect feature is coded at values ranging from 0 to 1. A

threshold value must be selected to separate mission success from failure. Any Effect

value greater than or equal to the threshold is coded a success, while any Effect value

less than the threshold is coded a failure. Three different thresholds were chosen for

investigation: .85, .75, and .65. (see Table 3.5 for exemplar breakdown). The thresh-

olds were chosen to give a broad range of mission success from the low 50% range to

the low 70% range. In reality, one would expect that the mission success rate would

be greater than 90% for US aerospace forces. However, this was not practical due

to adverse effects on measures of performance (see Chapter 4 for details). The three

sub-cases will be referred to as Effect .85, Effect .75, and Effect .65 throughout the

rest of this thesis.

Table 3.4 Effect Case Targets

Class Target 1 Target 2
Success .9 .1
Failure .1 .9
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Table 3.5 Effect Case Exemplar Breakdown

Threshold Class # Exemplars % Total
.85 Success 328 51.4
.85 Failure 310 48.6
.75 Success 422 66.1
.75 Failure 216 33.9
.65 Success 458 71.8
.65 Failure 180 28.2

3.2 Multivariate Analysis Techniques

The objective of multivariate analysis is to take each of the four cases and

measure the impact of uncertainty in predicting either mission success or the source

of mission generation. First, SNR saliency is used to reduce the number of input

features. Finally, FFNN and GRNN classifiers are used on the reduced feature data

for output feature prediction. A MATLABr m-file was created to execute each of

these techniques (see Appendix C).

3.2.1 Common Practices

There are several procedural and statistical practices common to all three mul-

tivariate techniques:

1. A total of 10 training runs are performed at each design point. A design point is

defined as a specific case (Alert, Effect .85, Effect .75, or Effect .65) executed with a

specific multivariate analysis technique (SNR saliency, FFNN, or GRNN).

2. Exemplars from the data case are randomly split into training and validation

sets. The split is accomplished by adding a random feature [Uniform(0,1)] to each

exemplar and then sorting all of the exemplars in ascending order based on random

feature values. The first 80% of exemplars are placed in the training set and the

remaining 20% in the validation set. This random data split is repeated before each

training run.
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3. Data from each case is standardized so that all features have a zero mean and unit

variance [2]. Standardization of the data (X) is obtained using Equation 3.1, where

Xs is a matrix of standardized data, Xd is a matrix of mean corrected data (see

Equation 3.2), and D (see Equation 3.3) is a diagonal matrix composed of variances

(see Equation 3.4) for each feature in X (also the diagonal of the covariance matrix

of X) [8].

Xs = Xd ·D−1/2 (3.1)

Xd = 1 · x′ (3.2)

D =




s2
1 0 . . . 0

0
. . .

...
...

. . .
...

0 . . . . . . s2
n




(3.3)

s2 =
1

n− 1
x′d · xd (3.4)

4. Rotation, with Principal Component Analysis (PCA) component coefficients,

is used to transform data from each case into principal components of common

factors for potentially improved classification. Data (X) is rotated using Equation

3.5, where Xr is a matrix of rotated data and L is a matrix of PCA component

coefficients. The component coefficient matrix (L) is calculated (see Equation 3.6)
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from a matrix of eigenvectors (A) and a diagonal matrix of eigenvalues (Λ) from the

sample correlation matrix (R). [8]

Xr = X · L (3.5)

L = A ·Λ1/2 (3.6)

The sample correlation matrix (R) is calculated (see Equation 3.7) using the

sample covariance matrix (C) and the diagonal matrix of the sample covariance

matrix (D). Finally, the sample covariance matrix (C) is calculated (see Equation

3.8) using a matrix of data (X), the mean vector of that data (x), and the number

of exemplars in the data (n). [8]

R = D−1/2 ·C ·D−1/2 (3.7)

C =
(X′ ·X)− n · (x · x′)

n− 1
(3.8)

5. Statistical averages (y) for measures of performance (y) are calculated by remov-

ing the highest and lowest values from the 10 runs and taking the average of the

remaining 8 values (see Equation 3.9) [17]. This is done to eliminate the impact to

the average for a result that is much greater or less (an extreme outlier on the error

surface) than the other values, since there are only 10 runs of data at each design

point.
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y =

∑10
i=1 yi −max10

i=1 yi −min10
i=1 yi

8
(3.9)

6. Sample variances (s2) for measures of performance (y) are calculated by taking

the variance of the 8 values used in the average calculation (see Equation 3.10) [17].

s2 =

∑8
i=1(yi − y)2

7
(3.10)

7. The hypothesis test used to determine if an input feature is significant (a statistical

difference in average between classes) is as follows [17]:

H0 : µ1 = µ2

Ha : µ1 > µ2

Rejection Region: Z > Zα

The test statistic (Z) is calculated with Equation 3.11, the critical value (Zα)

has to be looked up in a Z distribution table, and µ1 and µ2 are approximated by

y1 and y2 respectively. Using an α of .05, Zα = 1.645. The number of exemplars in

class 1 is n1 and the number of exemplars in class 2 is n2. [17]

Z =
y1 − y2√
s21
n1

+
s22
n2

(3.11)

8. The hypothesis test used to determine if a measure of performance is significant

(a statistical difference in average between two results) is as follows [17]:
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H0 : µ1 = µ2

Ha : µ1 > µ2

Rejection Region: t > tα

The test statistic (t) is calculated with Equation 3.12, the critical value (tα)

has to be looked up in a t distribution table, and µ1 and µ2 are approximated by y1

and y2 respectively. Using an α of .05 with 14 degrees of freedom, based on 8 runs

each for each average, tα = 1.761. This test assumes that y1 and y2 are independent

samples from normal distributions with equal population variances (σ2
1 = σ2

2). [17]

t =
y1 − y2

sp ·
√

1
4

, where sp =

√
7 · s2

1 + 7 · s2
2

14
(3.12)

3.2.2 Signal-to-Noise Ratio Saliency

The objective of SNR saliency analysis is input feature reduction. The goal

is to remove those features which add no value to (or possibly reduce) supervised

training classification. The SNR saliency method, modified from Bauer, Alsing, and

Greene [2], is outlined below:

1. Add a noise [Uniform(0,1)] feature (xn) to the input features set for each exemplar

[2].

2. Randomize the training and validation sets.

3. Standardize the data.

4. Train the training set with a FFNN (see Figure 3.2 for FFNN architecture [10]).

Refer to the FFNN section in this chapter for training and architecture details.

5. Calculate SNR saliency measures of performance using Equation 3.13, where

SNRi is the SNR saliency measure for input feature i, wij is the hidden layer weight
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Figure 3.2 SNR Saliency FFNN Architecture

from input feature i to hidden neurode j, and wnj is the weight from the noise input

feature to hidden neurode j. An input feature is salient if its SNR is greater than 0.

[2]

SNRi = 10 · logbase10

[∑4
j=1(wij)

2

∑4
j=1(wnj)2

]
(3.13)

6. Simulate validation set output activations by using the hidden layer (w) weights,

output layer (u) weights, and biases (b) from training. The output activations (Z1

and Z2) are posterior probabilities, approximated between {.1,.9} of class member-

ship. The highest output activation is the predicted class. This is the result of using

a .5 threshold for class membership (i.e. if Z1 ≥ .5, then class 1, otherwise class 2).

7. All of the validation set exemplars (N) are evaluated to determine a classification

accuracy (CA) measure of performance (see Equation 3.14). A true positive (TP)
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occurs when target class 1 is predicted as class 1 and a true negative (TN) occurs

when target class 2 is predicted as class 2.

CA =

∑
TP +

∑
TN

N
(3.14)

8. Identify the feature with the lowest SNR saliency measure of performance and

remove it from further training [2].

9. Repeat steps 2 through 8 until the only input feature left is noise [2].

Finally, a reduced input feature set, with the noise feature removed, is selected

for FFNN and GRNN supervised training. This decision is based on two factors:

a. The reduced input feature set must be salient (all SNRs > 0).

b. Reduce the number of input features as low as possible without losing

significant classification accuracy.

3.2.3 Feed Forward Neural Network

The objective of FFNN supervised training is to train the reduced input feature

set for each data case and provide measures of performance that can be used for

comparison of the results of uncertainty and GRNN supervised training. The FFNN

supervised training method is outlined below:

1. Randomize the training and validation sets.

2. Standardize, rotate and standardize, or standardize and rotate the data. All three

methods will be investigated for each data case.

3. Train the training set with a FFNN (see Figure 3.3 for FFNN architecture [10]).

The MATLABr newff function is used to create a FFNN with 4 log-sigmoid hid-

den neurodes and 2 log-sigmoid output neurodes. This architecture was based on

previous experience with the database and a few test runs. Max training is set at
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1500 epochs and mean squared error (MSE) goal at .01 for the Alert case and .05

for the Effect cases. These setting were determined after a few test runs with epochs

varied from 500 to 5000 and MSE goal varied from .1 to .01. Finally, each training

run consists of 10 iterations.
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Figure 3.3 FFNN Architecture

The mathematical process for FFNN training, adapted from Looney [10], is as

follows:

a. Hidden and output layer weights and biases are initialized at random (newff

uses initnw to initialize weights and biases according to the Nguyen-Widrow initial-

ization algorithm [4]).

b. Activations from hidden layer neurodes (f) are calculated with the log-

sigmoid transfer function (see Equation 3.15), where s is a function of input features

(x) and hidden layer weights (w), b1 is hidden layer bias, and n is the number of

input features [10].
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fi =
1

1 + exp−s+b1
, where s =

n∑
j=1

wji · xj (3.15)

c. Activations from output layer neurodes (g or Z) are calculated with the

log-sigmoid transfer function (see Equation 3.16), where s is a function of hidden

layer neurode activations (f) and output layer weights (u), b2 is output layer bias,

and m is the number of hidden layer neurodes [10].

gi =
1

1 + exp−s+b2
, where s =

m∑
j=1

uji · fj (3.16)

d. Hidden and output layer weights are biases are updated (trained) each epoch

using the MATLABr trainrp batch mode gradient update function. This function

uses a resilient backpropagation algorithm that is generally much faster than the

standard steepest descent algorithm and eliminates harmful effects from having small

slopes at the extreme ends of the log-sigmoid transfer function. Equation 3.17 is the

gradient descent algorithm for backpropagation, where xk+1 is an updated vector of

weights and biases, xk is a vector of current weights and biases, gk is the current

gradient, and αk is the learning rate. [4]

xk+1 = xk − αk · gk (3.17)

e. Training stops when the maximum number of epochs or the MSE goal is

reached [10].
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4. Simulate validation set output activations by using the hidden layer (w) weights,

output layer (u) weights, and biases (b) from training. The output activations (Z1

and Z2) are posterior probabilities of class membership. The highest output ac-

tivation is the predicted class. This is the result of using a .5 threshold for class

membership (i.e. if Z1 ≥ .5, then class 1, otherwise class 2).

5. All of the validation set exemplars (N) are evaluated to determine a classification

accuracy (CA) measure of performance (same method as SNR saliency). Also, a

measure of performance for the probability of a true positive [P(TP)] is calculated

(see Equation 3.18), where n is the number of validation set exemplars with target

class 1. Finally, a measure of performance for the probability of a true negative

[P(TN)] is calculated (see Equation 3.19), where m is the number of validation set

exemplars with target class 2.

P (TP ) =

∑
TP

n
(3.18)

P (TN) =

∑
TN

m
(3.19)

6. A receiver operating characteristic (ROC) curve is plotted (see Figure 3.4) as

adapted from Egan [9]. The curve plots the probability of false positive [P(FP)],

target class 2 is predicted as class 1, versus the P(TP). Points on the ROC curve

are generated for 101 thresholds between 0 and 1, incremented by .1. TP and FP

determinations are made as follows:

If Z1>threshold, then classify as TP if actual class 1, else classify as FP.
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Figure 3.4 Sample ROC Curve

The P(TP) (same method as above) and the P(FP) (see Equation 3.20) are

calculated , where m is the number of validation set exemplars with target class

2. It is important to note that since targets are coded with {.9,.1}, thresholds >.9

will always generate a ROC point at (0,0) and thresholds <.1 will always generate a

ROC point at (1,1). This has no impact on the ROC curve.

P (FP ) =

∑
FP

m
(3.20)

7. Finally, an average metric distance (AMD) measure of performance is determined

from the ROC curve as adapted from Alsing, Bauer, and Oxley [1]. AMD is a

measure of the “robustness” of the classifier and is calculated (see Equation 3.21)

using the average of the Euclidian distances between each ROC curve point and its

corresponding point on the “chance” line, the diagonal line running between (0,0)

and (1,1) on the ROC curve. ROCi is the column vector of the ROC point for

threshold i and CHi is the column vector of the chance line point for threshold i.
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AMD =

∑101
i=1

√
(ROCi −CHi)′(ROCi −CHi)

101
(3.21)

3.2.4 General Regression Neural Network

The objective of GRNN supervised training is to train the reduced input feature

set for each data case and provide measures of performance that can be used for

comparison of the results of uncertainty and FFNN supervised training. The GRNN

supervised training method is outlined below:

1. Randomize the training and validation sets.

2. Standardize, standardize and rotate, or rotate and standardize the data. All three

methods will be investigated for each data case.

3. Train the training set with a GRNN (see Figure 3.5 for GRNN architecture [15])

using a spread parameter (σ) between .1 and 1, incremented by .1. This decision

was based on previous experience with the database and a few test runs. The spread

parameter with the best CA will be used for further analysis. The MATLABr

newgrnn function is used to create a GRNN with n (the number of training set

exemplars) exponential hidden neurodes, 3 linear summation neurodes, and 2 con-

ditional probability of class output neurodes.

The mathematical process for GRNN training (simulation of validation set

exemplars), adapted from Specht [15], is as follows:

a. The input vector (v) weights are initialized using one training set exemplar

for each input vector [15].

b. Activations from hidden layer neurodes (hidden neurodes a have input

vectors (v) from training set target class 1 and hidden neurodes b have input vectors

(v) from training set target class 2) are calculated for each validation set exemplar

with an exponential (radial basis) function (see Equation 3.22), [15]. D2
i is the
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squared Euclidian distance between a column vector of input features (x) and a

column vector of input vector weights (vi) (see Equation 3.23). [15]

ai or bi = exp
[−D2

i /(2 · σ2
]

(3.22)

D2
i = (x− vi)

′(x− vi) (3.23)

c. Activations from summation layer neurodes (S) are calculated using linear

functions (see Equation 3.24), where p is the number of training set exemplars with

target class 1 and q is the number of training set exemplars with target class 2 [15].
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Sa =

p∑
i=1

ai, Sb =

q∑
i=1

bi and S = Sa + Sb (3.24)

d. Activations from output layer neurodes (P or Z) are calculated using

Bayes Theorem (see Equation 3.25), where P (X|Y )P (Y ) = Sa for target class 1,

P (X|Y )P (Y ) = Sb for target class 2, and P (X) = S (see Equation 3.26). P1 is the

posterior probability of being in class 1 and P2 is the posterior probability of being

in class 2. The highest output activation is the predicted class. This is the result

of using a .5 threshold for class membership (i.e. if Z1 ≥ .5, then class 1, otherwise

class 2). [15]

P (Y |X) =
P (X|Y )P (Y )

P (X)
(3.25)

P1 = Sa/S and P2 = Sb/S (3.26)

e. Training stops when all of the validation set exemplars have been processed

through the GRNN.

4. All of the validation set exemplars are evaluated to determine measures of per-

formance for CA, P(TP), and P(TN) (same method as FFNN).

5. A ROC curve is plotted (same method as FFNN).

6. Finally, an AMD measure of performance is determined from the ROC curve

(same method as FFNN).
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3.3 Summary

The methods used in this thesis fall into two categories: data preparation and

multivariate analysis. Data preparation involves taking the “raw” ATO and MIS-

REP databases and reducing them into one final usable database with 15 features

of interest. Subsequently, one data case with a low level of uncertainty (Alert) and

three data cases with a high level of uncertainty (Effect) are selected for multivari-

ate analysis. Multivariate analysis includes common statistical practices and three

techniques: SNR saliency, FFNN supervised training, and GRNN supervised train-

ing. Measures of performance from multivariate analysis are used to determine the

impact of uncertainty on the data.
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4. Numerical Results

This chapter contains all of the numerical results from data preparation and multi-

variate statistical analysis. First, the mean vector section compares means between

classes for input features. Next, the SNR saliency, FFNN, and GRNN sections

present measures of performance from output feature prediction. Finally, the FFNN

versus GRNN section seeks to find the superior neural network classifier.

4.1 Mean Vectors

The mean vectors for both of the classes are calculated for each of the four

data cases: Alert, Effect .85, Effect .75, and Effect .65. The purpose of this is to

determine if any of the 14 input feature have significant statistical difference between

the two classes. These significant features provide a first look at the data and give

some indication of those features that may be significant in SNR saliency.

The mean vectors for the Alert case (see Table 4.1) show that MSN Type, #

AC, and STGS are significantly greater for the Alert class and MSN Time, TOS,

and AC Type are significantly greater for the Pre-Planned class. Significant features

for the Alert case are rank ordered in Table 4.2. It makes since that mission type

has the greatest difference in means because certain mission types lend themselves

to alert missions.
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Table 4.1 Alert Case Mean Vectors

Class MSN Type # AC MSN Time TOS AC Type # ESM # SAF
Alert 2.2740 2.1731 3.9877 1.4146 10.48 0.2404 0.2356
Pre-Plan 1.5466 1.8866 4.5397 1.6419 11.59 0.3360 0.2348
Significant Yes Yes Yes Yes Yes No No

Class SAF Type STGS # ORD ORD Type ALT TGT Type Effect
Alert 0.2837 0.2356 34.63 16.93 19304 4.0576 0.7959
Pre-Plan 0.3482 0.1336 31.61 16.19 20380 4.2660 0.8097
Significant No Yes No No No No No

Table 4.2 Alert Case Significant Feature Rank Order

Rank Feature Z value
1 MSN Type 12.4037
2 # AC 3.6915
3 AC Type 2.2838
4 STGS 2.1163
5 MSN Time 1.8376
6 TOS 1.7668

The mean vectors for the Effect .85 case (see Table 4.3) show that MSN Time,

TOS, # SAF, SAF Type, and # ORD are significantly greater for the Success class

and MSN Type and # AC are significantly greater for the Failure class. Significant

features for the Effect .85 case are rank ordered in Table 4.4.
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Table 4.3 Effect .85 Case Mean Vectors

Class MSN Type # AC MSN Time TOS AC Type # ESM # SAF
Success 2.6646 1.9238 4.8744 1.9585 10.60 0.2530 0.3232
Failure 3.0161 2.0677 4.3027 1.5808 11.04 0.2968 0.2290

Significant Yes Yes Yes Yes No No Yes

Class SAF Type STGS # ORD ORD Type ALT TGT Type Alert
Success 0.4207 0.1860 42.03 15.44 20139 4.1586 0.3445
Failure 0.2935 0.1387 23.18 15.89 20210 3.9720 0.3161

Significant Yes No Yes No No No No

Table 4.4 Effect .85 Case Significant Feature Rank Order

Rank Feature Z value
1 TOS 3.3500
2 MSN Type 2.5317
3 # AC 2.4439
4 MSN Time 2.4138
5 SAF Type 2.004
6 # SAF 1.9783
7 # ORD 1.7252

The mean vectors for the Effect .75 case (see Table 4.5) show that TOS, #

SAF, SAF Type, # ORD, and TGT Type are significantly greater for the Success

class and MSN Type, ORD Type, and ALT are significantly greater for the Failure

class. Significant features for the Effect .75 case are rank ordered in Table 4.6.
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Table 4.5 Effect .75 Case Mean Vectors

Class MSN Type # AC MSN Time TOS AC Type # ESM # SAF
Success 2.6848 2.0000 4.7044 1.8435 10.87 0.2488 0.3104
Failure 3.1296 1.9815 4.3860 1.6411 10.71 0.3241 0.2130

Significant Yes No No Yes No No Yes

Class SAF Type STGS # ORD ORD Type ALT TGT Type Alert
Success 0.3981 0.1825 42.77 15.36 19803 4.2712 0.3507
Failure 0.2824 0.1250 13.54 16.23 20896 3.6707 0.2917

Significant Yes No Yes Yes Yes Yes No

Table 4.6 Effect .75 Case Significant Feature Rank Order

Rank Feature Z value
1 # ORD 3.1368
2 MSN Type 2.5631
3 TGT Type 2.1546
4 # SAF 2.0766
5 SAF Type 1.7858
6 ORD Type 1.7723
7 TOS 1.7410
8 ALT 1.7241

The mean vectors for the Effect .65 case (see Table 4.7) show that MSN Time,

TOS, # SAF, SAF Type, # ORD, and TGT Type are significantly greater for the

Success class and MSN Type and # ESM are significantly greater for the Failure

class. Significant features for the Effect .65 case are rank ordered in Table 4.8.
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Table 4.7 Effect .65 Case Mean Vectors

Class MSN Type # AC MSN Time TOS AC Type # ESM # SAF
Success 2.7205 1.9934 4.7289 1.8578 10.85 0.2489 0.3035
Failure 3.1278 1.9944 4.2601 1.5644 10.73 0.3389 0.2111

Significant Yes No Yes Yes No Yes Yes

Class SAF Type STGS # ORD ORD Type ALT TGT Type Alert
Success 0.3952 0.1703 39.99 15.46 19895 4.2944 0.3450
Failure 0.2667 0.1444 14.76 16.17 20881 3.4915 0.2944

Significant Yes No Yes No No Yes No

Table 4.8 Effect .65 Case Significant Feature Rank Order

Rank Feature Z value
1 TGT Type 2.8116
2 # ORD 2.6925
3 MSN Type 2.5631
4 TOS 2.4540
5 SAF Type 1.9335
6 # SAF 1.8762
7 MSN Time 1.7816
8 # ESM 1.6757

Overall, MSN Type and TOS are common significant features for all four cases.

This indicates that certain mission types and the amount of time aircraft spend on

station are generally invariant to changes in uncertainty. Additionally, TOS, # SAF,

SAF Type, and # ORD are common significant features for the Success class of all

three Effect cases. This makes sense since the more time an aircraft spends on station

and the more ordnance that is dropped, one would expect that the probability of

success would increase. Also, an aircraft that spends more time on station would

be expected to be subjected to more surface-to-air firings. Finally, MSN Type is a

common significant feature for the Failure class of all three Effect cases. This makes

sense since some mission types are historically more successful than others.
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4.2 Signal-to-Noise Ratio Saliency

SNR saliency analysis is performed for each of the four data cases: Alert, Effect

.85, Effect .75, and Effect .65. The purpose of this is to reduce the initial 14 input

features as much as possible without losing significant classification accuracy.

The SNR saliency results for the Alert case are summarized in Table D.1 in

Appendix D, where the lowest SNR for each design point is italicized. A plot of

the number of input features versus validation set CA is shown in Figure 4.1. The

best combination of CA and saliency is found at 5 input features, MSN Type, #

AC, MSN Time, AC Type, and # ORD. All of these except # ORD are significant

features in the mean vector.
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Figure 4.1 Alert Case SNR Classification Accuracy

The SNR saliency results for the Effect .85 case are summarized in Table D.2

in Appendix D, where the lowest SNR for each design point is italicized. A plot of

the number of input features versus validation set CA is shown in Figure 4.2. The

best combination of CA and saliency is found at 3 input features, MSN Type, #

ESM, and # ORD. All of these except # ESM are significant features in the mean

vector.
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Figure 4.2 Effect .85 Case SNR Classification Accuracy

The SNR saliency results for the Effect .75 case are summarized in Table D.3

in Appendix D, where the lowest SNR for each design point is italicized. A plot of

the number of input features versus validation set CA is shown in Figure 4.3. The

best combination of CA and saliency is found at 5 input features, MSN Type, STGS,

# ORD, ORD Type, and Alert. All of these except STGS and Alert are significant

features in the mean vector.
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Figure 4.3 Effect .75 Case SNR Classification Accuracy

The SNR saliency results for the Effect .65 case are summarized in Table D.4

in Appendix D, where the lowest SNR for each design point is italicized. A plot of

the number of input features versus validation set CA is shown in Figure 4.4. The

best combination of CA and saliency is found at 4 input features, MSN Type, AC

Type, # ORD, and ORD Type. All of these except AC Type and ORD Type are

significant features in the mean vector.
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Figure 4.4 Effect .65 Case SNR Classification Accuracy

Overall, MSN Type and # ORD are common reduced input features for all

four cases. Both of these features are significant in the mean vector for the three

Effect cases and only MSN Type is significant in the mean vector for the Alert case.

This shows that there are some strong ties between significant features in the mean

vector and reduces features in SNR saliency. Additionally, # ORD is the most im-

portant and MSN Type is the second most important feature for all three Effect

cases. Again, this is expected because the more ordnance that is dropped and cer-

tain mission types lead to a higher expected probability of success. As expected, the

CA for the low uncertainty Alert case (0.8832) is significantly higher than the best

CA (0.7051) for the high uncertainty Effect cases (Effect .65). Finally, Figure 4.5

is a plot of the effect threshold versus CA for the reduced input feature data (noise

still present). It clearly shows that CA increases as the effect threshold decreases.
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Figure 4.5 SNR Effect Threshold Versus Classification Accuracy

4.3 Feed Forward Neural Network

FFNN supervised training is performed for each of the four reduced input

feature data cases: Alert (5 input features), Effect .85 (3 input features), Effect

.75 (5 input features), and Effect .65 (4 input features). The purpose of this is

output feature prediction. Three data methods are investigated: standardization

only (coded as # of input features-S), standardization then rotation (coded as # of

input features-SR), and rotation then standardization (coded as # of input features-

RS). The “best” overall result is determined by the method with the highest CA.

FFNN ROC curve results for the Alert case are plotted in Figure 4.6. It is

difficult to determine if the 5-S or 5-SR method gives the “best” results from the

ROC curves alone.
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Figure 4.6 FFNN Alert Case Validation Set ROC Curves

Measures of performance results for the Alert case are summarized in Table

4.9. The 5-S method has the highest CA, P(TN), and is the most “robust” classifier,

while the 5-SR method has the highest P(TP). The significance of these results

is summarized in Table 4.10. This shows that there is not a significant difference

between the two methods with the “best” ROC curve results, 5-S and 5-SR.

Table 4.9 FFNN Alert Case Validation Set Measures of Performance

Method CA P(TP) P(TN) AMD
5-S 0.8852 0.9150 0.8536 0.3932

5-SR 0.8805 0.9258 0.8470 0.3802
5-RS 0.8091 0.8722 0.7789 0.3376
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Table 4.10 FFNN Alert Case Validation Set Significance Matrix

Measure 5-S vs. 5-SR 5-S vs. 5-RS 5-SR vs. 5-RS
CA No Yes Yes

P(TP) No No Yes
P(TN) No Yes Yes
AMD No Yes No

FFNN ROC curve results for the Effect .85 case are plotted in Figure 4.7. It

is difficult to determine which of the three methods give the “best” results from the

ROC curves alone.
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Figure 4.7 FFNN Effect .85 Case Validation Set ROC Curves

Measures of performance results for the Effect .85 case are summarized in Table

4.11. The 3-S method has the highest CA and P(TP), while the 3-RS method has the

highest P(TN) and is the most “robust” classifier. The significance of these results
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is summarized in Table 4.12. This shows that there is not a significant difference

between the three methods except for AMD using the 3-RS method.

Table 4.11 FFNN Effect .85 Case Validation Set Measures of Perfor-
mance

Method CA P(TP) P(TN) AMD
3-S 0.5195 0.6280 0.4089 0.2982

3-SR 0.5049 0.5909 0.4285 0.2977
3-RS 0.5039 0.5441 0.4831 0.3157

Table 4.12 FFNN Effect .85 Case Validation Set Significance Matrix

Measure 3-S vs. 3-SR 3-S vs. 3-RS 3-SR vs. 3-RS
CA No No No

P(TP) No No No
P(TN) No No No
AMD No Yes Yes

FFNN ROC curve results for the Effect .75 case are plotted in Figure 4.8. It

is difficult to determine which of the three methods give the “best” results from the

ROC curves alone.
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Figure 4.8 FFNN Effect .75 Case Validation Set ROC Curves

Measures of performance results for the Effect .75 case are summarized in Ta-

ble 4.13. The 5-S method has the highest CA and P(TN), the 5-SR method has the

highest P(TP), and the 5-RS method is the most “robust” classifier. The significance

of these results is summarized in Table 4.14. This shows that there is not a signifi-

cant difference between the three methods except for CA using the 5-S method.
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Table 4.13 FFNN Effect .75 Case Validation Set Measures of Perfor-
mance

Method CA P(TP) P(TN) AMD
5-S 0.6738 0.8725 0.3028 0.2507

5-SR 0.6396 0.8806 0.2127 0.2606
5-RS 0.6406 0.8305 0.2957 0.2680

Table 4.14 FFNN Effect .75 Case Validation Set Significance Matrix

Measure 5-S vs. 5-SR 5-S vs. 5-RS 5-SR vs. 5-RS
CA Yes Yes No

P(TP) No No No
P(TN) Yes No No
AMD No No No

FFNN ROC curve results for the Effect .65 case are plotted in Figure 4.9. It

is difficult to determine if the 4-S or 4-SR method gives the “best” results from the

ROC curves alone.
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Figure 4.9 FFNN Effect .65 Case Validation Set ROC Curves

Measures of performance results for the Effect .65 case are summarized in Table

4.15. The 4-S method has the highest CA, the 4-SR method has the highest P(TP)

and is the most “robust” classifier, and the 4-RS method has the highest P(TN).

The significance of these results is summarized in Table 4.16. This shows that there

is not a significant difference between the two methods with the “best” ROC curve

results, 5-S and 5-SR, except for P(TP) and AMD.
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Table 4.15 FFNN Effect .65 Case Validation Set Measures of Perfor-
mance

Method CA P(TP) P(TN) AMD
4-S 0.7461 0.9211 0.2753 0.2729

4-SR 0.7383 0.9663 0.1781 0.3048
4-RS 0.6338 0.7221 0.4306 0.2569

Table 4.16 FFNN Effect .65 Case Validation Set Significance Matrix

Measure 4-S vs. 4-SR 4-S vs. 4-RS 4-SR vs. 4-RS
CA No Yes Yes

P(TP) Yes Yes Yes
P(TN) No No Yes
AMD Yes No Yes

Overall, the standardization only method provides the “best” results in terms

of CA for all four cases. This result is significantly higher for only the Effect .75 case.

Also, the other three measures of performance do not have a common “best” result

method. Therefore, the standardization only method will be used for comparison

with GRNN results for all four cases. As expected, the CA for the low uncertainty

Alert case (0.8852) is still significantly higher than the best CA (0.7461) for the high

uncertainty Effect cases (Effect .65). Figure 4.10 is a plot of the effect threshold

versus the four measures of performance for the reduced input feature data. It

clearly shows that CA and P(TP) increase as the effect threshold decreases, P(TN)

decreases as the effect threshold decreases, and AMD is invariant to changes in

threshold. This results in ROC curves moving up and to the right as the threshold

decreases. This leads to almost all of the missions being predicted as successful at a

.65 threshold, which hinders the purpose of classification.
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Figure 4.10 FFNN Effect Threshold Versus Measures of Performance

4.4 General Regression Neural Network

GRNN supervised training is performed for each of the four reduced input

feature data cases: Alert (5 input features), Effect .85 (3 input features), Effect

.75 (5 input features), and Effect .65 (4 input features). The purpose of this is

output feature prediction. Three data methods are investigated: standardization

only (coded as # of input features-S), standardization then rotation (coded as # of

input features-SR), and rotation then standardization (coded as # of input features-

RS). The “best” overall result is determined by the method with the highest CA.

The effects of spread for the Alert case are summarized in Table 4.17. The

optimal spread was selected at 0.1 for all three methods.
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Table 4.17 GRNN Alert Case Spreads

Spread 5-S CA 5-SR CA 5-RS CA
1.0 0.8324 0.8558 0.5426
0.9 0.8407 0.8585 0.5316
0.8 0.8819 0.8695 0.5343
0.7 0.8956 0.8832 0.5522
0.6 0.9011 0.8654 0.5261
0.5 0.8846 0.8791 0.6154
0.4 0.8887 0.8736 0.5852
0.3 0.8915 0.8819 0.5632
0.2 0.8984 0.8929 0.6827
0.1 0.9038 0.8956 0.6992

GRNN ROC curve results for the Alert case are plotted in Figure 4.11. It is

difficult to determine if the 5-S or 5-SR method gives the “best” results from the

ROC curves alone.
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Figure 4.11 GRNN Alert Case Validation Set ROC Curves

Measures of performance results for the Alert case are summarized in Table

4.18. The 5-S method has the highest CA, P(TP), and P(TN), while the 5-SR

method is the most “robust” classifier. The significance of these results is summa-

rized in Table 4.19. This shows that there is not a significant difference between the

two methods with the “best” ROC curve results, 5-S and 5-SR.

Table 4.18 GRNN Alert Case Validation Set Measures of Performance

Method CA P(TP) P(TN) AMD
5-S 0.9052 0.9213 0.8925 0.4733

5-SR 0.8984 0.9170 0.8886 0.4834
5-RS 0.6992 0.6820 0.7361 0.2157
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Table 4.19 GRNN Alert Case Validation Set Significance Matrix

Measure 5-S vs. 5-SR 5-S vs. 5-RS 5-SR vs. 5-RS
CA No Yes Yes

P(TP) No Yes Yes
P(TN) No Yes Yes
AMD No Yes Yes

The effects of spread for the Effect .85 case are summarized in Table 4.20. The

optimal spread was selected at 0.7 for the 3-S method, 0.5 for the 3-SR method, and

0.8 for the 3-RS method.

Table 4.20 GRNN Effect .85 Case Spreads

Spread 3-S CA 3-SR CA 3-RS CA
1.0 0.4893 0.5107 0.4766
0.9 0.5137 0.5254 0.4775
0.8 0.5156 0.5205 0.4824
0.7 0.5371 0.5078 0.4648
0.6 0.4990 0.5215 0.4600
0.5 0.5244 0.5361 0.4805
0.4 0.5068 0.5293 0.4707
0.3 0.5010 0.4971 0.4746
0.2 0.5088 0.5088 0.4795
0.1 0.4961 0.5029 0.4639

GRNN ROC curve results for the Effect .85 case are plotted in Figure 4.12. It

is difficult to determine if the 3-S or 3-SR method gives the “best” results from the

ROC curves alone.
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Figure 4.12 GRNN Effect .85 Case Validation Set ROC Curves

Measures of performance results for the Effect .85 case are summarized in Table

4.21. The 3-S method has the highest CA and P(TN), while the 3-RS method has the

highest P(TP) and is the most “robust” classifier. The significance of these results

is summarized in Table 4.22. This shows that there is not a significant difference

between the two methods with the “best” ROC curve results, 3-S and 3-SR.

Table 4.21 GRNN Effect .85 Case Validation Set Measures of Perfor-
mance

Method CA P(TP) P(TN) AMD
3-S 0.5332 0.6600 0.4081 0.3020

3-SR 0.5283 0.6865 0.3846 0.2981
3-RS 0.4814 0.7130 0.2911 0.3347
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Table 4.22 GRNN Effect .85 Case Validation Set Significance Matrix

Measure 3-S vs. 3-SR 3-S vs. 3-RS 3-SR vs. 3-RS
CA No Yes Yes

P(TP) No No No
P(TN) No No No
AMD No Yes Yes

The effects of spread for the Effect .75 case are summarized in Table 4.23. The

optimal spread was selected at 0.7 for the 5-S method, 0.5 for the 5-SR method, and

0.6 for the 5-RS method.

Table 4.23 GRNN Effect .75 Case Spreads

Spread 5-S CA 5-SR CA 5-RS CA
1.0 0.6406 0.6494 0.6484
0.9 0.6680 0.6689 0.6660
0.8 0.6602 0.6533 0.6514
0.7 0.6846 0.6553 0.6602
0.6 0.6787 0.6797 0.6777
0.5 0.6797 0.6865 0.6553
0.4 0.6582 0.6836 0.6504
0.3 0.6592 0.6709 0.6621
0.2 0.6494 0.6592 0.6641
0.1 0.6387 0.6563 0.6533

GRNN ROC curve results for the Effect .75 case are plotted in Figure 4.13. It

is difficult to determine if the 5-S or 5-SR method gives the “best” results from the

ROC curves alone.
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Figure 4.13 GRNN Effect .75 Case Validation Set ROC Curves

Measures of performance results for the Effect .75 case are summarized in Table

4.24. The 5-S method has the highest CA, the 5-SR method has the highest P(TN),

and the 5-RS method has the highest P(TP) and is the most “robust” classifier. The

significance of these results is summarized in Table 4.25. This shows that there is a

significant difference between the two methods with the “best” ROC curve results,

5-S and 5-SR, except for P(TP).
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Table 4.24 GRNN Effect .75 Case Validation Set Measures of Perfor-
mance

Method CA P(TP) P(TN) AMD
5-S 0.6914 0.9059 0.2244 0.2781

5-SR 0.6777 0.8862 0.2821 0.2594
5-RS 0.6719 0.9985 0.0000 0.3465

Table 4.25 GRNN Effect .75 Case Validation Set Significance Matrix

Measure 5-S vs. 5-SR 5-S vs. 5-RS 5-SR vs. 5-RS
CA Yes No No

P(TP) No Yes Yes
P(TN) Yes Yes Yes
AMD Yes Yes Yes

The effects of spread for the Effect .65 case are summarized in Table 4.26. The

optimal spread was selected at 0.6 for the 4-S method, 0.7 for the 4-SR method, and

0.2 for the 4-RS method.
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Table 4.26 GRNN Effect .65 Case Spreads

Spread 4-S CA 4-SR CA 4-RS CA
1.0 0.7197 0.6963 0.7061
0.9 0.7295 0.7041 0.7168
0.8 0.7314 0.7100 0.7178
0.7 0.7295 0.7422 0.7139
0.6 0.7490 0.7246 0.7188
0.5 0.7480 0.7158 0.7080
0.4 0.7295 0.7188 0.7051
0.3 0.7041 0.7070 0.7002
0.2 0.6914 0.7100 0.7217
0.1 0.7119 0.6904 0.7168

GRNN ROC curve results for the Effect .65 case are plotted in Figure 4.14. It

is difficult to determine if the 4-S or 4-SR method gives the “best” results from the

ROC curves alone.
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Figure 4.14 GRNN Effect .65 Case Validation Set ROC Curves

Measures of performance results for the Effect .65 case are summarized in Table

4.27. The 4-S method has the highest CA and P(TN), while the 4-RS method has the

highest P(TP) and is the most “robust” classifier. The significance of these results is

summarized in Table 4.28. This shows that there is no significant difference between

the two methods with the “best” ROC curve results, 4-S and 4-SR, except for P(TN)

and AMD.
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Table 4.27 GRNN Effect .65 Case Validation Set Measures of Perfor-
mance

Method CA P(TP) P(TN) AMD
4-S 0.7480 0.9632 0.1991 0.2983

4-SR 0.7383 0.9686 0.1646 0.3095
4-RS 0.7256 0.9880 0.0040 0.3428

Table 4.28 GRNN Effect .65 Case Validation Set Significance Matrix

Measure 4-S vs. 4-SR 4-S vs. 4-RS 4-SR vs. 4-RS
CA No Yes No

P(TP) No Yes Yes
P(TN) Yes Yes Yes
AMD Yes Yes Yes

Overall, the standardization only method provides the “best” results in terms

of CA for all four cases. This result is significantly higher for only the Effect .75

case. Also, P(TP) and AMD have a common “best” result in the rotation then

standardization method for all three Effect cases. Therefore, the standardization

only method will be used for comparison with FFNN results for all four cases. As

expected, the CA for the low uncertainty Alert case (0.9052) is still significantly

higher than the best CA (0.7480) for the high uncertainty Effect cases (Effect .65).

Figure 4.15 is a plot of the effect threshold versus the four measures of performance

for the reduced input feature data. It clearly shows that CA and P(TP) increase

as the effect threshold decreases, P(TN) decreases as the effect threshold decreases,

and AMD is invariant to changes in threshold. These are the same results as FFNN

supervised training.
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Figure 4.15 GRNN Effect Threshold Versus Measures of Performance

4.5 FFNN Versus GRNN

A comparison of the “best” results from FFNN supervised training and GRNN

supervised training is made for each of the four reduced input feature data cases:

Alert (5 input features), Effect .85 (3 input features), Effect .75 (5 input features),

and Effect .65 (4 input features). The purpose of this is to determine which neural

network classifier is superior. Only the “best” data method from both FFNN and

GRNN supervised training is investigated: standardization only (coded as # of input

features-S). The “best” overall classifier is determined by the neural network with

the highest CA.

ROC curve results for the Alert case are plotted in Figure 4.16. It is difficult to

determine if FFNN 5-S or GRNN 5-S gives the “best” results from the ROC curves

alone.
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Figure 4.16 FFNN vs. GRNN Alert Case Validation Set ROC Curves

Measures of performance results and significance for the Alert case are sum-

marized in Table 4.29. The GRNN 5-S has the highest CA, P(TP), P(TN), and is

the most “robust” classifier. There is not a significant difference between the two

classifiers except for P(TN) and AMD.

Table 4.29 FFNN vs. GRNN Alert Case Validation Set Measures of
Performance

Classifier CA P(TP) P(TN) AMD
FFNN 5-S 0.8852 0.9150 0.8536 0.3932
GRNN 5-S 0.9052 0.9213 0.8925 0.4733
Significant No No Yes Yes
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ROC curve results for the Effect .85 case are plotted in Figure 4.17. It appears

that GRNN 3-S gives the “best” results from the ROC curves.
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Figure 4.17 FFNN vs. GRNN Effect .85 Case Validation Set ROC
Curves

Measures of performance results and significance for the Effect .85 case are

summarized in Table 4.30. The GRNN 3-S has the highest CA, P(TP), and is the

most “robust” classifier, while FFNN 3-S has the highest P(TN). There is not a

significant difference between the two classifiers.
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Table 4.30 FFNN vs. GRNN Effect .85 Case Validation Set Measures
of Performance

Classifier CA P(TP) P(TN) AMD
FFNN 3-S 0.5195 0.6280 0.4089 0.2982
GRNN 3-S 0.5332 0.6600 0.4081 0.3020
Significant No No No No

ROC curve results for the Effect .75 case are plotted in Figure 4.18. It is diffi-

cult to determine if FFNN 5-S or GRNN 5-S gives the “best” results from the ROC

curves alone.
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Figure 4.18 FFNN vs. GRNN Effect .75 Case Validation Set ROC
Curves

Measures of performance results and significance for the Effect .75 case are

summarized in Table 4.31. The GRNN 5-S has the highest CA, P(TP), and is

the most “robust” classifier, while FFNN 5-S has the highest P(TN). There is a

significant difference between the two classifiers in all measures except CA.
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Table 4.31 FFNN vs. GRNN Effect .75 Case Validation Set Measures
of Performance

Classifier CA P(TP) P(TN) AMD
FFNN 5-S 0.6738 0.8725 0.3028 0.2507
GRNN 5-S 0.6914 0.9059 0.2244 0.2781
Significant No Yes Yes Yes

ROC curve results for the Effect .65 case are plotted in Figure 4.19. It is

difficult to determine if FFNN 4-S or GRNN 4-S gives the “best” results from the

ROC curves alone.
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Figure 4.19 FFNN vs. GRNN Effect .65 Case Validation Set ROC
Curves

Measures of performance results and significance for the Effect .65 case are

summarized in Table 4.32. The GRNN 4-S has the highest CA, P(TP), and is
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the most “robust” classifier, while FFNN 4-S has the highest P(TN). There is no

significant difference between the two classifiers except for P(TP) and AMD.

Table 4.32 FFNN vs. GRNN Effect .65 Case Validation Set Measures
of Performance

Classifier CA P(TP) P(TN) AMD
FFNN 4-S 0.7461 0.9211 0.2753 0.2729
GRNN 4-S 0.7480 0.9632 0.1991 0.2983
Significant No Yes No Yes

Overall, the GRNN is the superior neural network classifier for this data. This

was expected based on previous work with this data. GRNN supervised training

provides the “best” results in terms of CA for all four cases. This result is not

significantly higher than the FFNN for any of the cases. Also, P(TP) and AMD

have a common “best” result in the GRNN and P(TN) has a common “best” result

in the FFNN for all three Effect cases. As expected, the CA for the low uncertainty

Alert case (0.9052) is still significantly higher than the best CA (0.7480) for the high

uncertainty Effect cases (Effect .65).

4.6 Summary

Numerical results are obtained from analyzing the mean vector and performing

SNR saliency, FFNN supervised training, and GRNN supervised training on all four

data cases. Mean vector analysis shows that there are common significant features

for all four cases and among the success and failure classes of the three Effect cases.

SNR saliency analysis reduced the number of input features from 14 down to 3,4, or 5,

depending on the case. Most of these reduced features are common to the significant

features in the mean vector. The same two input features, MSN Type and # ORD,

are the most important for all four cases. This shows the invariance of these features

to uncertainty. FFNN supervised training measures of performance show that the

standardize only method provides the best CA. The same holds true for GRNN
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supervised training. The GRNN is superior to the FFNN for all four data cases.

Uncertainty had a big impact in all of these techniques. CA for the low uncertainty

case (Alert) is much higher than any of the high uncertainty cases (Effect). As the

threshold of Effect decreases, CA and P(TP) increase, P(TN) increases, and AMD

is invariant.
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5. Conclusions and Future Research

This chapter wraps up the overview, literature review, methodology, and numerical

results presented in the previous four chapters. First, special problems encountered

in the course of this research are described. Next, conclusions based on numerical

results are presented. Finally, recommendations for further research are provided.

5.1 Special Problems Encountered

Special problems were encountered in two areas: MISREP data and EBO

objectives. The MISREP data provided for this thesis was very inconsistent in both

format and content. This was the cause of a lot of uncertainty in the features, in

particular SAF Type, TGT Type, and Effect. Text-based inputs for all three of these

features made it difficult to identify the intended data field entry. It seems clear that

this problem, and a lot of related uncertainty, can be dealt with by implementing

a standardized format for MISREPs that limits each data field to pre-determined

options.

The ATO and MISREP data provided for this thesis did not connect tactical

(mission) level results to EBO objectives. This causes a lot of uncertainty in de-

termining whether or not a mission is a success at the operational level. For this

thesis, success was determined by interpreting the results of each individual weapon

and setting a success threshold at the mission level. This naturally does not give

a complete picture of mission success. Ideally, mission results would be measured

by comparing tactical level results to the impact on EBO objectives and setting a

success threshold.
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5.2 Conclusions

The results of this research show that uncertainty has a significant impact

on real-world aerospace mission data. Results are obtained from four data cases:

low level of uncertainty (Alert) and high level of uncertainty (Effect .85, Effect .75,

and Effect .65). These cases are compared using five analytical techniques: mean

vectors, SNR saliency, FFNN supervised training, GRNN supervised training, and

FFNN versus GRNN.

Mean vector analysis shows that there are significant statistical differences

between the two classes for each case. MSN Type and TOS are common significant

features for all four cases. TOS, # SAF, SAF Type, and # ORD are common

significant features for the Success class of all three Effect cases. MSN Type is a

common significant feature for the Failure class of all three Effect cases. Most of

these significant features appear again as reduced input features in SNR saliency

analysis.

SNR saliency analysis shows that the original 14 input features can be reduced

to 5 for the Alert and Effect .75 cases, 4 for the Effect .65 case, and 3 for the Effect

.85 case. The two most important input features for all four cases are MSN Type

and # ORD. Uncertainty has a direct impact on CA as the low uncertainty Alert

case has 88% CA compared to 70% CA for the best Effect case (Effect .65). In fact,

CA decreases for the Effect case as the threshold increases. This is expected since an

overwhelming majority of US aerospace missions are historically successful, which

would indicate a lower threshold for success.

FFNN supervised training shows that the standardization only method pro-

vides the best results, in terms of CA, for all four cases. There is no best method

for P(TP), P(TN), and AMD measures of performance. This indicates that data

rotation by PCA loadings has no impact on FFNN supervised training. As with

SNR saliency, uncertainty has a direct impact on CA as the low uncertainty Alert
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case has 88% CA compared to 74% CA for the best Effect case (Effect .65). For

the Effect cases, CA and P(TP) decrease, P(TN) increases, and AMD is invariant

as the threshold increases. This causes the ROC curve to move up and to the right

(instead of the desired up and to the left) as the threshold decreases.

GRNN supervised training shows that the standardization only method pro-

vides the best results, in terms of CA, for all four cases. The best method for P(TP)

and AMD is rotation then standardization. As with SNR saliency and FFNN, un-

certainty has a direct impact on CA as the low uncertainty Alert case has 90% CA

compared to 74% CA for the best Effect case (Effect .65). For the Effect cases,

CA and P(TP) decrease, P(TN) increases, and AMD is invariant as the threshold

increases. This causes the ROC curve to move up and to the right (instead of the

desired up and to the left) as the threshold decreases.

A FFNN versus GRNN comparison shows that the GRNN using the standard-

ization method provides the best results, in terms of CA, for all four cases. Clearly,

the GRNN is the superior classifier.

Overall, analysis of the low uncertainty case (Alert) and high certainty cases

(Effect .85, Effect .75, Effect .65) shows that it is very difficult to predict mission

success when there is a high level of uncertainty in quantifying the measure of success

and failure in the first place. The results from the Alert case clearly show that a very

high CA can be obtained from this database using multivariate analysis techniques.

Therefore, the uncertainty in the Effect feature must be the main cause of lower

(not much higher than chance) CA for the Effect cases. Higher CA can be obtained

by lowering the Effect threshold, but this has the effect of predicting almost every

mission a success (high P(TP) and low P(TN)). As a result, the uncertainty in the

Effect feature must be lowered in order to obtain reasonable (greater than 70%) CA

for mission success.
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5.3 Recommendations for Future Research

There are several different areas for future research with this thesis. First,

the source data can be manipulated and changed to create different final useable

databases for multivariate analysis. For example, a different three ATO day period

can be chosen from the OIF data or source data from a different conflict, such as

Kosovo or Afghanistan, can be used. Next, there might be other significant input

features in the ATO and MISREP databases used in the thesis, or data not available

for this thesis, that improve CA or reduce the number of input features. Also,

different neural network architectures of the FFNN and GRNN, or a completely

different classifier, can be investigated to determine if similar, or even better, CA

results can be obtained.

Additionally, it is possible to measure mission success with methods differ-

ent than the Effect method presented in this thesis. Possibilities include measuring

success on the individual weapon level or in multiple stages, which might include suc-

cessful weapon release, successful hit, successful high order explosion, and successful

strategic level effect.

More importantly, collecting and/or generating data connecting tactical level

results to EBO objectives is critical to reducing the level of uncertainty and improving

CA for predicting mission success or failure. The combination of that data and the

multivariate analysis techniques used in this thesis could produce a tool for decision

makers in the AOC to measure one mission setup versus another to determine the

best choice for mission success.

5.4 Contributions

The primary contribution of this thesis is that real-world aerospace mission

data can be used to classify mission success. The low uncertainty Alert case validated

the multivariate analysis techniques used in this thesis and the high uncertainty
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Effect cases followed with a mathematical foundation for classifying mission success.

A secondary contribution is that sources of uncertainty in ATO and MISREP data

were identified and hopefully improvements to data collection and analysis techniques

can be made in the future.
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Appendix A. List of Acronyms

AAA Anti-Aircraft Artillery

ACO Airspace Control Order

ADOCS Automated Deep Operations Coordination System

AFDD Air Force Doctrine Document

AMD Average Metric Distance

AO Air Operations

AOC Aerospace Operations Center

AOP Air Operations Plan

ATO Air Tasking Order

BDA Battle Damage Assessment

CA Classification Accuracy

CAS Close Air Support

CI Confidence Interval

COD Combat Operations Division

CPD Combat Plans Division

EBO Effects Based Operations

FFNN Feed Forward Neural Network

FP False Positive

GRNN General Regression Neural Network

ISDS Intelligence Shared Data Server

ITS Interim Targeting Solution

JFC Joint Force Commander

JFACC Joint Force Air Component Commander

JGAT Joint Guidance Apportionment and Targeting
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JIPTL Joint Integrated Prioritized Target List

LB Lower Bound

MAAP Master Air Attack Plan

MSE Mean Squared Error

OIF Operation Iraqi Freedom

PCA Principal Components Analysis

ROC Receiver Operating Characteristic

ROE Rules of Engagement

SAM Surface-to-Air Missile

SD Strategy Division

SEAD Suppression of Enemy Air Defense

SNR Signal-to-Noise Ratio

SPINS Special Instructions

TAP Theater Air Planner

TBMCS Theater Battle Management Core System

TN True Negative

TP True Positive

TPW Target Planning Worksheet

UMD Unit Manning Document

UB Upper Bound
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Appendix B. Final Database Sample

Table B.1 is a 25 exemplar sample from the final database. Please contact Dr. J. O.

Miller via email (john.miller@afit.edu) for the complete database.

Table B.1 Final Database Sample

 
 
 
 
 
 
 
 
 
 
 

MSN Type # AC MSN Time TOS AC Type # ESM # SAF  SAF Type STGS # ORD ORD Type ALT TGT Type Alert Effect 

2 2 2.28 1.00 0 0 0 0 0 2 28.00 9000 5.00 1 0.00 

1 2 3.22 0.25 14 1 0 0 0 3 13.00 20000 2.00 0 0.00 

3 2 1.83 0.50 2 0 0 0 0 1 14.00 17200 0.00 0 0.00 

6 1 3.65 2.25 15 0 0 0 0 2 14.00 18000 1.00 0 0.00 

2 1 4.50 3.75 15 0 0 0 1 3 19.33 15000 0.00 0 0.00 

7 2 5.35 1.58 14 0 0 0 0 2 13.00 12500 2.00 0 0.00 

2 2 1.58 0.83 15 0 0 0 0 2 12.00 20000 10.00 1 0.00 

2 2 1.92 1.50 14 0 0 0 0 2 28.00 8000 0.00 1 0.00 

2 1 6.20 6.08 15 0 0 0 1 2 22.00 15000 0.00 0 0.00 

3 2 3.75 0.50 7 0 0 0 0 1 13.00 22000 9.00 0 0.00 

2 2 1.58 0.50 15 1 0 0 0 9 19.80 18000 10.00 1 0.00 

3 4 1.77 0.17 14 0 0 0 1 3 30.00 13000 2.00 1 0.00 

1 2 1.75 0.67 19 1 1 4 0 2 31.00 16000 3.00 0 0.00 

3 2 4.58 3.00 19 0 2 1 1 1 28.00 9000 10.00 1 0.00 

4 2 4.42 0.50 12 1 0 0 0 1 7.00 20800 4.00 0 0.00 

1 2 1.75 0.67 19 1 1 4 0 2 31.00 16000 3.00 0 0.00 

6 2 4.13 1.17 8 0 1 1 0 2 12.00 21500 6.00 0 0.00 

2 2 2.67 0.75 19 2 2 3 0 1 31.00 17000 2.00 1 0.00 

6 2 2.08 0.50 14 0 0 0 0 5 17.20 21400 10.00 0 0.20 

1 2 3.52 0.50 14 0 0 0 0 4 13.00 20713 2.00 0 0.25 

1 2 3.27 0.08 14 0 0 0 0 4 13.00 13000 3.75 0 0.25 

3 2 2.67 0.50 15 0 0 0 0 10 12.80 19000 2.00 1 0.30 

7 2 5.95 1.75 14 1 0 0 0 3 9.00 25000 4.00 0 0.33 

4 2 4.67 2.00 12 0 0 0 0 3 13.00 18567 4.00 0 0.33 

1 2 2.67 0.25 14 0 0 0 0 3 16.67 18000 0.00 0 0.33 
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Appendix C. MATLABr Code

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
% Title: Effects of Uncertainty on Real World Aerospace Mission Data 
% 
% Author: Capt Steven J. Barosko 
% 
% Abstract:  This Matlab code takes data exemplars and randomizes, standardizes, and rotates  
% the data as needed before performing SNR saliency, FFNN, and GRNN multivariate techniques. 
% 
% Data exemplars: 
%   Column 1: Noise Input Feature 
%   Columns 2-15: 14 Input Features 
%   Columns 16-17: Output Feature Targets 
%   Note: Only 1 sample exemplar is shown. 
% 
D = [0.0029  1  3  1  14.15  3.72  5  0  1  1  0  12  18.00  38000  6.11  0.1  0.9]; 
% 
% Randomize the data. 
% 
R=[rand(size(D,1),1),D]; 
R=sortrows(R,1); 
% 
% Calculate cut-off for training set (80%) and validation set (20%) data exemplar split. 
% 
C=round(.8*size(D,1)); 
% 
% Separate the data into a training set input feature matrix (X), validation set input  
% feature matrix (Y), training set target matrix (Tx), and validation set target matrix (Ty). 
% 
X=[R(1:C,2:16)];  
Y=[R((C+1):size(D,1),2:16)]; 
Tx=[R(1:C,17:18)]; 
Ty=[R((C+1):size(D,1),17:18)]; 
% 
% Input feature matrix adjustment used to drop off unused input features. 
% 
X=[X(:,2:3),X(:,11:13)]; 
Y=[Y(:,2:3),Y(:,11:13)]; 
% 
% Calculate the correlation matrix of the training set input feature matrix. 
% 
Cor = corrcoef(X);  
% 
% Calculate the correlation matrix eigenvalues and eigenvectors. 
% 
[V,E]=eig(Cor);  
% 
% Calculate the correlation matrix PCA loadings. 
% 
Lambdar = diag(diag(sqrt(E))); 
Loadr = V*Lambdar;  
% 
% Rotate the training and validation set input feature matrices with PCA loadings (data may  
% be roatated before or after standardization, or not at all). 
% 
X=X*Loadr; 
Y=Y*Loadr; 
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% 
% Standardize the training and validation set input  feature matrices. 
% 
X=(X-ones(size(X,1),1)*mean(X))*inv(sqrt(diag(diag( cov(X))))); 
Y=(Y-ones(size(Y,1),1)*mean(Y))*inv(sqrt(diag(diag( cov(Y))))); 
% 
% Start of FFNN supervised training (n iterations).  
% 
n=10;  
Zx=[zeros(2,C)]; 
Zy=[zeros(2,(size(D,1)-C))]; 
S=[zeros(1,size(X,2))]; 
W=[zeros(4,size(X,2))]; 
SNR=[]; 
for i=1:n 
% 
% Create a two-layer FFNN: the first layer has 4 LO GSIG nuerodes and the second layer has  
% 2 LOGSIG nuerodes.  Uses a resilient backpropogat ion batch mode gradient update function. 
% 
    net=newff(minmax(X'),[4 2],{'logsig' 'logsig'}, 'trainrp'); 
% 
% Train the network for 1500 epochs with MSE goal o f 0.05 (Effect cases) or 0.01 (Alert case). 
% 
    net.trainParam.epochs=1500; 
    net.trainParam.goal=0.05; 
    net=train(net,X',Tx'); 
% 
% Calculate output activations for the training and  (Zx) validation sets (Zy). 
% 
    Zx=Zx+sim(net,X'); 
    Zy=Zy+sim(net,Y'); 
% 
% Save the hidden layer weights. 
% 
    W=W+net.IW{1}; 
% 
% End of FFNN supervised training. 
% 
end 
% 
% Average the output activations for the training ( Zx) and validation sets (Zy). 
% 
for j=1:C 
    Zx(:,j)=Zx(:,j)/n; 
end 
for k=1:(size(D,1)-C) 
    Zy(:,k)=Zy(:,k)/n; 
end 
% 
% Average the hidden layer weights. 
% 
for m=1:size(X,2) 
   W(:,m)=W(:,m)/n;  
end   
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% 
% Calculate SNRs for each of the input features. 
% 
for q=1:size(X,2) 
    for p=1:4  
        S(1,q)=S(1,q)+W(p,q)^2; 
    end 
end 
for r=1:size(X,2) 
    SNR(1,r)=10*log10(S(1,r)/S(1,1));  
end 
% 
% Create a two-layer GRNN (this section must be com mented out when FFNN results are desired 
% and vice versa).  The spread parameter is adjuste d from 1.0 to 0.1 in increments of 0.1.  
% 
SPREAD=.6; 
net=newgrnn(X',Tx',SPREAD); 
% 
% Calculate output activations for the training (Zx ) and validation sets (Zy). 
% 
Zx=sim(net,X'); 
Zy=sim(net,Y'); 
% 
% Calculate data points for ROC curve. 101 points a re calculated for thresholds varying from  
% 0 to 1, incremented by 0.1.  The corresponding ch ance line data points are calculated as well. 
% 
    n=100; 
    ROC=[zeros(2,n+1)];  
    DLINE=[zeros(2,n+1)]; 
    AMD=[]; 
    for i=0:n 
        count1=0; 
        count2=0; 
        for j=1:(size(D,1)-C) 
            if Ty(j,1)==.9 
                count1=count1+1; 
                if Zy(1,j)>(i*(1/n)) 
                    ROC(1,i+1)=ROC(1,i+1)+1; 
                end   
            end 
            if Ty(j,1)==.1 
                count2=count2+1; 
                if Zy(1,j)>(i*(1/n)) 
                    ROC(2,i+1)=ROC(2,i+1)+1; 
                end 
            end  
        end 
        ROC(1,i+1)=ROC(1,i+1)/count1; 
        DLINE(1,i+1)=1-(i*(1/n)); 
        ROC(2,i+1)=ROC(2,i+1)/count2; 
        DLINE(2,i+1)=1-(i*(1/n)); 
    end 
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% 
% Calculate average metric distance (euclidian) of ROC curve data points from corresponding 
% chance line data points. 
% 
ED=0; 
    for i=0:n 
        ED=ED+sqrt((ROC(1,i+1)-DLINE(1,i+1))^2+(ROC (2,i+1)-DLINE(2,i+1))^2);  
    end 
% 
% Display AMD. 
% 
AMD=[AMD,ED/(n+1)] 
% 
% Save desired output data for Excel spreadsheet an alysis. 
% 
outpt1 = Ty;  
outpt2 = Zy';  
outpt3 = SNR';  
outpt4 = ROC';  
save('Insert Path Here\Tgt.xls','outpt1','-ascii',' -tabs'); 
save('Insert Path Here\Val.xls','outpt2','-ascii',' -tabs'); 
save('Insert Path Here\SNR.xls','outpt3','-ascii',' -tabs'); 
save('Insert Path Here\ROC.xls','outpt4','-ascii',' -tabs'); 
% 
% Code is finished. 
% 
disp('Done!') 
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Appendix D. SNR Saliency Summaries

Table D.1 Alert Case SNR Saliency Summary

Features CA MSN Type # AC MSN Time TOS AC Type # ESM # SAF
14 0.8736 23.57 9.15 10.45 8.82 9.15 2.97 5.02
13 0.8750 18.76 6.75 9.60 5.50 4.76 3.40 3.14
12 0.8599 21.41 8.98 8.25 5.45 8.18 0.82 2.95
11 0.8558 21.72 5.64 9.51 7.39 6.17 N/A 4.95
10 0.8970 21.31 7.07 9.60 8.87 8.32 N/A 1.80
9 0.8860 20.05 7.37 7.16 7.89 8.32 N/A N/A
8 0.8777 19.43 7.16 11.00 6.68 6.52 N/A N/A
7 0.8571 18.39 6.79 7.79 4.88 6.67 N/A N/A
6 0.8832 23.59 8.90 12.85 6.64 9.13 N/A N/A
5 0.8832 27.00 13.99 16.74 N/A 13.57 N/A N/A
4 0.8681 24.04 12.78 18.20 N/A 9.60 N/A N/A
3 0.8640 23.68 8.85 15.83 N/A N/A N/A N/A
2 0.8338 19.37 N/A 18.44 N/A N/A N/A N/A
1 0.7569 16.74 N/A N/A N/A N/A N/A N/A

Features SAF Type STGS # ORD ORD Type ALT TGT Type Effect
14 7.64 5.45 6.43 4.37 7.27 4.36 2.85
13 2.66 1.79 6.95 1.96 4.41 2.74 N/A
12 4.78 N/A 8.56 2.05 5.31 4.37 N/A
11 1.50 N/A 7.45 2.93 6.38 3.21 N/A
10 N/A N/A 8.04 4.24 8.52 3.98 N/A
9 N/A N/A 6.34 2.10 5.94 0.16 N/A
8 N/A N/A 9.05 3.94 5.20 N/A N/A
7 N/A N/A 3.32 N/A 3.30 N/A N/A
6 N/A N/A 9.90 N/A N/A N/A N/A
5 N/A N/A 13.23 N/A N/A N/A N/A
4 N/A N/A N/A N/A N/A N/A N/A
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Table D.2 Effect .85 Case SNR Saliency Summary

Features CA MSN Type # AC MSN Time TOS AC Type # ESM # SAF
14 0.5342 3.54 -0.45 2.83 0.29 1.25 1.10 2.53
13 0.5430 4.61 N/A 3.02 2.85 2.34 0.14 -0.36
12 0.5127 6.05 N/A 2.96 3.94 0.76 1.05 0.31
11 0.5293 9.69 N/A 5.95 4.08 2.11 5.69 4.34
10 0.5313 4.11 N/A 2.00 2.60 N/A 2.91 0.83
9 0.5361 7.81 N/A 6.19 4.37 N/A 5.67 3.13
8 0.5410 4.84 N/A 4.20 3.49 N/A 3.83 -1.90
7 0.5615 4.31 N/A 3.14 3.30 N/A 2.82 N/A
6 0.5479 6.27 N/A 1.07 0.58 N/A 3.14 N/A
5 0.5488 8.43 N/A 2.57 2.64 N/A 2.66 N/A
4 0.5635 5.42 N/A N/A -0.29 N/A -0.28 N/A
3 0.5645 2.38 N/A N/A N/A N/A 2.30 N/A
2 0.5371 1.85 N/A N/A N/A N/A N/A N/A
1 0.5313 N/A N/A N/A N/A N/A N/A N/A

Features SAF Type STGS # ORD ORD Type ALT TGT Type Alert
14 -0.30 0.97 8.10 0.22 0.34 0.75 0.26
13 2.84 0.58 9.79 -1.88 3.66 1.74 3.10
12 1.77 -1.19 9.55 N/A 3.29 3.24 1.50
11 4.16 N/A 11.21 N/A 3.60 4.72 2.84
10 0.17 N/A 6.28 N/A 3.20 3.20 2.54
9 N/A N/A 10.65 N/A 6.00 3.62 2.37
8 N/A N/A 8.27 N/A 0.60 0.14 N/A
7 N/A N/A 8.48 N/A 1.21 2.67 N/A
6 N/A N/A 6.85 N/A N/A -0.48 N/A
5 N/A N/A 7.18 N/A N/A N/A N/A
4 N/A N/A 8.80 N/A N/A N/A N/A
3 N/A N/A 8.83 N/A N/A N/A N/A
2 N/A N/A 6.79 N/A N/A N/A N/A
1 N/A N/A -0.74 N/A N/A N/A N/A
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Table D.3 Effect .75 Case SNR Saliency Summary

Features CA MSN Type # AC MSN Time TOS AC Type # ESM # SAF
14 0.6348 7.57 1.67 4.55 1.72 3.30 2.24 2.35
13 0.6846 7.21 4.06 3.57 2.97 4.29 0.24 2.62
12 0.6426 9.32 4.56 4.36 5.88 6.18 2.22 2.67
11 0.6660 7.01 4.01 5.33 0.54 5.75 N/A 3.44
10 0.6689 5.10 -0.24 4.72 N/A 4.58 N/A 0.69
9 0.6758 6.29 N/A 5.36 N/A 4.23 N/A 1.81
8 0.6611 10.71 N/A 3.37 N/A 0.79 N/A N/A
7 0.6641 9.07 N/A 4.32 N/A N/A N/A N/A
6 0.6543 10.08 N/A N/A N/A N/A N/A N/A
5 0.6748 6.99 N/A N/A N/A N/A N/A N/A
4 0.6504 1.69 N/A N/A N/A N/A N/A N/A
3 0.6553 2.67 N/A N/A N/A N/A N/A N/A
2 0.6602 1.58 N/A N/A N/A N/A N/A N/A
1 0.6172 N/A N/A N/A N/A N/A N/A N/A

Features SAF Type STGS # ORD ORD Type ALT TGT Type Alert
14 2.75 5.10 15.53 3.31 3.80 0.59 0.77
13 0.19 3.26 17.21 3.67 2.18 N/A 2.46
12 N/A 6.45 17.33 6.04 3.40 N/A 3.09
11 N/A 4.99 16.90 2.94 2.24 N/A 3.32
10 N/A 6.51 14.49 0.73 1.45 N/A 0.20
9 N/A 3.23 18.06 4.31 4.33 N/A 4.08
8 N/A 4.87 15.73 3.45 5.09 N/A 4.04
7 N/A 7.59 20.00 4.93 5.80 N/A 6.05
6 N/A 5.71 19.68 5.70 3.35 N/A 6.61
5 N/A 0.59 12.71 1.52 N/A N/A 2.23
4 N/A N/A 10.01 -0.36 N/A N/A 0.97
3 N/A N/A 16.85 N/A N/A N/A 2.19
2 N/A N/A 14.65 N/A N/A N/A N/A
1 N/A N/A 14.20 N/A N/A N/A N/A
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Table D.4 Effect .65 Case SNR Saliency Summary

Features CA MSN Type # AC MSN Time TOS AC Type # ESM # SAF
14 0.6738 3.28 -1.58 1.82 1.86 1.03 2.43 1.56
13 0.7021 1.31 -4.79 -0.39 0.91 2.19 -0.45 -0.34
12 0.7314 2.46 N/A 2.15 1.71 1.59 -0.02 0.05
11 0.6943 2.78 N/A 4.21 0.05 1.90 N/A -0.63
10 0.7305 4.43 N/A -0.73 -0.11 1.73 N/A 0.87
9 0.7090 6.94 N/A N/A 0.81 3.97 N/A 1.86
8 0.7139 6.04 N/A N/A N/A 4.80 N/A 0.53
7 0.6826 9.87 N/A N/A N/A 7.95 N/A 2.68
6 0.6963 2.65 N/A N/A N/A 2.97 N/A N/A
5 0.6992 8.12 N/A N/A N/A 8.04 N/A N/A
4 0.7051 5.66 N/A N/A N/A 4.78 N/A N/A
3 0.6904 3.92 N/A N/A N/A 3.86 N/A N/A
2 0.6953 -2.78 N/A N/A N/A N/A N/A N/A
1 0.6475 N/A N/A N/A N/A N/A N/A N/A

Features SAF Type STGS # ORD ORD Type ALT TGT Type Alert
14 1.11 -2.14 15.27 2.50 -0.40 3.02 1.49
13 -0.99 N/A 13.07 3.88 -3.14 0.81 -0.71
12 0.75 N/A 11.64 0.36 1.93 0.81 0.53
11 4.49 N/A 12.51 0.66 -1.39 1.77 2.54
10 0.07 N/A 16.54 1.67 N/A 0.35 2.17
9 1.34 N/A 15.23 2.69 N/A 2.98 3.70
8 2.22 N/A 14.81 4.44 N/A 0.25 4.63
7 4.95 N/A 17.71 4.69 N/A N/A 6.80
6 -1.61 N/A 12.51 1.33 N/A N/A 1.44
5 N/A N/A 17.08 6.76 N/A N/A 6.05
4 N/A N/A 14.76 2.73 N/A N/A N/A
3 N/A N/A 10.47 N/A N/A N/A N/A
2 N/A N/A 9.62 N/A N/A N/A N/A
1 N/A N/A 3.55 N/A N/A N/A N/A
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